The importance of microstructural variations on the fracture toughness of human dentin.

نویسندگان

  • Juliana Ivancik
  • Dwayne D Arola
چکیده

The crack growth resistance of human dentin was characterized as a function of relative distance from the DEJ and the corresponding microstructure. Compact tension specimens were prepared from the coronal dentin of caries-free 3rd molars. The specimens were sectioned from either the outer, middle or inner dentin. Stable crack extension was achieved under Mode I quasi-static loading, with the crack oriented in-plane with the tubules, and the crack growth resistance was characterized in terms of the initiation (K(o)), growth (K(g)) and plateau (K(p)) toughness. A hybrid approach was also used to quantify the contribution of dominant mechanisms to the overall toughness. Results showed that human dentin exhibits increasing crack growth resistance with crack extension in all regions, and that the fracture toughness of inner dentin (2.2 ± 0.5 MPa·m(0.5)) was significantly lower than that of middle (2.7 ± 0.2 MPa·m(0.5)) and outer regions (3.4 ± 0.3 MPa·m(0.5)). Extrinsic toughening, composed mostly of crack bridging, was estimated to cause an average increase in the fracture energy of 26% in all three regions. Based on these findings, dental restorations extended into deep dentin are much more likely to cause tooth fracture due to the greater potential for introduction of flaws and decrease in fracture toughness with depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Microstructural Variations on the Fracture Toughness of Wrought Alloy 718

The effect of microstructural variations on the fracture toughness of Alloy 718 was reviewed. The metallurgical parameters surveyed in this paper included heat treatment, heat-to-heat variations, product-form variations, neutron irradiation and long-term thermal aging. Key microstructural features and operative fracture mechanisms were related to macroscopic fracture toughness properties.

متن کامل

Aging and Fracture of Human Cortical Bone and Tooth Dentin

Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function pr...

متن کامل

STRENGTH AND FRACTURE TOUGHNESS OF WHISKER REINFORCED DENTAL RESIN-BASED COMPOSITES

Enhancing the properties of dental resin composites is of interest to researchers. The objective of the present investigation was to improve the strength and fracture toughness of dental composites via addition of silicon carbide whiskers and substitution of commonly used filler materials with stabilized zirconia ceramic powder. It was also intended to study the effect of powder- to- whisker ra...

متن کامل

Viscoelasticity of Dentin Reduces Vulnerability of Teeth to Fracture

Teeth are exposed to cyclic loads due to their physiological functions such as mastication. With age, such repetitive force causes generation of cracks and caries in dentin, and eventually degeneration due to crack initiation and propagation. The degenerative effects are caused by elevated stress levels in cracked zones and also reduction of structural toughness due to presence of microstructur...

متن کامل

Effect of Heat Input on Microstructural and Mechanical Properties of AISI 304 Welded Joint Via MIG Welding

In this experimental work, AISI 304 was welded via metal inert gas (MIG) welding process with Argon (Ar) as shielding gas. In the present study, AISI 304 was subjected to different heat input using a standard 308L electrode. Weld quality i.e. ultimate tensile strength, toughness, microhardness, and microstructure of AISI 304 were examined. Microstructures of welded joints were studied using sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2013